Golang http server代码原理学习

  1. 本文基于Go 1.7.1,所有列的Go标准库的代码均来自于go/src/net/http/server.go文件。

  2. 代码列的有点多,感觉有点乱,但是感觉代码列不全对于想看代码的人又难受。好吧,其实是写的乱。看起来需要耐心...


Go中要实现一个简单的Web server非常的简单:

package main

import (

func main() {
    http.HandleFunc("/", HelloServer)

    log.Fatal(http.ListenAndServe(":8080", nil))

func HelloServer(w http.ResponseWriter, req *http.Request) {
    io.WriteString(w, "hello world!\n")

上面这个程序运行后,我们在浏览器中访问http://就会输出"hello world!"。那么第一个问题来了:http.ListenAndServe做了什么,它是怎么和http.HandleFunc关联起来的?OK,我们先来看一下http.ListenAndServe这个函数:

func ListenAndServe(addr string, handler Handler) error {
    server := &Server{Addr: addr, Handler: handler}
    return server.ListenAndServe()


// A Server defines parameters for running an HTTP server.
// The zero value for Server is a valid configuration.
type Server struct {
    Addr         string        // TCP address to listen on, ":http" if empty
    Handler      Handler       // handler to invoke, http.DefaultServeMux if nil
    ReadTimeout  time.Duration // maximum duration before timing out read of the request
    WriteTimeout time.Duration // maximum duration before timing out write of the response
    TLSConfig    *tls.Config   // optional TLS config, used by ListenAndServeTLS

    // MaxHeaderBytes controls the maximum number of bytes the
    // server will read parsing the request header's keys and
    // values, including the request line. It does not limit the
    // size of the request body.
    // If zero, DefaultMaxHeaderBytes is used.
    MaxHeaderBytes int

    // TLSNextProto optionally specifies a function to take over
    // ownership of the provided TLS connection when an NPN/ALPN
    // protocol upgrade has occurred. The map key is the protocol
    // name negotiated. The Handler argument should be used to
    // handle HTTP requests and will initialize the Request's TLS
    // and RemoteAddr if not already set. The connection is
    // automatically closed when the function returns.
    // If TLSNextProto is nil, HTTP/2 support is enabled automatically.
    TLSNextProto map[string]func(*Server, *tls.Conn, Handler)

    // ConnState specifies an optional callback function that is
    // called when a client connection changes state. See the
    // ConnState type and associated constants for details.
    ConnState func(net.Conn, ConnState)

    // ErrorLog specifies an optional logger for errors accepting
    // connections and unexpected behavior from handlers.
    // If nil, logging goes to os.Stderr via the log package's
    // standard logger.
    ErrorLog *log.Logger

    disableKeepAlives int32     // accessed atomically.
    nextProtoOnce     sync.Once // guards setupHTTP2_* init
    nextProtoErr      error     // result of http2.ConfigureServer if used


func (srv *Server) ListenAndServe() error
func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error
func (srv *Server) Serve(l net.Listener) error
func (srv *Server) SetKeepAlivesEnabled(v bool)


// ListenAndServe listens on the TCP network address srv.Addr and then
// calls Serve to handle requests on incoming connections.
// Accepted connections are configured to enable TCP keep-alives.
// If srv.Addr is blank, ":http" is used.
// ListenAndServe always returns a non-nil error.
func (srv *Server) ListenAndServe() error {
    addr := srv.Addr
    if addr == "" {
        addr = ":http"
    ln, err := net.Listen("tcp", addr)
    if err != nil {
        return err
    return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})


// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call srv.Handler to reply to them.
// For HTTP/2 support, srv.TLSConfig should be initialized to the
// provided listener's TLS Config before calling Serve. If
// srv.TLSConfig is non-nil and doesn't include the string "h2" in
// Config.NextProtos, HTTP/2 support is not enabled.
// Serve always returns a non-nil error.
func (srv *Server) Serve(l net.Listener) error {
    defer l.Close()
    if fn := testHookServerServe; fn != nil {
        fn(srv, l)
    var tempDelay time.Duration // how long to sleep on accept failure

    if err := srv.setupHTTP2_Serve(); err != nil {
        return err

    // TODO: allow changing base context? can't imagine concrete
    // use cases yet.
    baseCtx := context.Background()
    ctx := context.WithValue(baseCtx, ServerContextKey, srv)
    ctx = context.WithValue(ctx, LocalAddrContextKey, l.Addr())
    for {
        rw, e := l.Accept()
        if e != nil {
            if ne, ok := e.(net.Error); ok && ne.Temporary() {
                if tempDelay == 0 {
                    tempDelay = 5 * time.Millisecond
                } else {
                    tempDelay *= 2
                if max := 1 * time.Second; tempDelay > max {
                    tempDelay = max
                srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
            return e
        tempDelay = 0
        c := srv.newConn(rw)
        c.setState(c.rwc, StateNew) // before Serve can return
        go c.serve(ctx)


// A conn represents the server side of an HTTP connection.
type conn struct {
    // server is the server on which the connection arrived.
    // Immutable; never nil.
    server *Server

    // rwc is the underlying network connection.
    // This is never wrapped by other types and is the value given out
    // to CloseNotifier callers. It is usually of type *net.TCPConn or
    // *tls.Conn.
    rwc net.Conn

    // remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
    // inside the Listener's Accept goroutine, as some implementations block.
    // It is populated immediately inside the (*conn).serve goroutine.
    // This is the value of a Handler's (*Request).RemoteAddr.
    remoteAddr string

    // tlsState is the TLS connection state when using TLS.
    // nil means not TLS.
    tlsState *tls.ConnectionState

    // werr is set to the first write error to rwc.
    // It is set via checkConnErrorWriter{w}, where bufw writes.
    werr error

    // r is bufr's read source. It's a wrapper around rwc that provides
    // io.LimitedReader-style limiting (while reading request headers)
    // and functionality to support CloseNotifier. See *connReader docs.
    r *connReader

    // bufr reads from r.
    // Users of bufr must hold mu.
    bufr *bufio.Reader

    // bufw writes to checkConnErrorWriter{c}, which populates werr on error.
    bufw *bufio.Writer

    // lastMethod is the method of the most recent request
    // on this connection, if any.
    lastMethod string

    // mu guards hijackedv, use of bufr, (*response).closeNotifyCh.
    mu sync.Mutex

    // hijackedv is whether this connection has been hijacked
    // by a Handler with the Hijacker interface.
    // It is guarded by mu.
    hijackedv bool

如注释所示,这个结构描述/代表了服务端的一个HTTP连接。这个类型也有很多方法,这里我们只介绍上面调用到的方法:func (c *conn) serve(ctx context.Context),因为每个goroutine执行的就是这个方法。这个内容有点多,我们只保留对我们分析有用的部分:

func (c *conn) serve(ctx context.Context) {
    serverHandler{c.server}.ServeHTTP(w, w.req)


// serverHandler delegates to either the server's Handler or
// DefaultServeMux and also handles "OPTIONS *" requests.
type serverHandler struct {
    srv *Server

func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
    handler := sh.srv.Handler
    if handler == nil {
        handler = DefaultServeMux
    if req.RequestURI == "*" && req.Method == "OPTIONS" {
        handler = globalOptionsHandler{}
    handler.ServeHTTP(rw, req)


type Handler interface {
    ServeHTTP(ResponseWriter, *Request)


  1. 我们从http.ListenAndServe开始,先是找到了Server这个类型,它用来描述一个运行HTTP服务的Server。而http.ListenAndServe就是调用了这个它的方法ListenAndServe,这个方法又调用了Serve这个方法。在Serve这个方法中,我们看到对于每个请求,都会创建一个goroutine去执行conn类型的serve方法。

  2. 然后我们又分析了conn类型,它描述了服务端的一个HTTP连接。它的serve方法里面调用了Handler接口的ServeHTTP方法。


接下来我们就分析Go HTTP中最重要的角色ServeMux



ServeHTTP是Go中的HTTP请求分发器(HTTP request multiplexer),负责将特定URL来的请求分发给特定的处理函数。匹配的规则我摘抄一些Golang的文档,就不翻译了,基本就是正常思路:

Patterns name fixed, rooted paths, like "/favicon.ico", or rooted subtrees, like "/images/" (note the trailing slash). Longer patterns take precedence over shorter ones, so that if there are handlers registered for both "/images/" and "/images/thumbnails/", the latter handler will be called for paths beginning "/images/thumbnails/" and the former will receive requests for any other paths in the "/images/" subtree.

Note that since a pattern ending in a slash names a rooted subtree, the pattern "/" matches all paths not matched by other registered patterns, not just the URL with Path == "/".

If a subtree has been registered and a request is received naming the subtree root without its trailing slash, ServeMux redirects that request to the subtree root (adding the trailing slash). This behavior can be overridden with a separate registration for the path without the trailing slash. For example, registering "/images/" causes ServeMux to redirect a request for "/images" to "/images/", unless "/images" has been registered separately.

Patterns may optionally begin with a host name, restricting matches to URLs on that host only. Host-specific patterns take precedence over general patterns, so that a handler might register for the two patterns "/codesearch" and "codesearch.google.com/" without also taking over requests for "http://www.google.com/".

ServeMux also takes care of sanitizing the URL request path, redirecting any request containing . or .. elements or repeated slashes to an equivalent, cleaner URL.



// HandleFunc registers the handler function for the given pattern
// in the DefaultServeMux.
// The documentation for ServeMux explains how patterns are matched.
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
    DefaultServeMux.HandleFunc(pattern, handler)

// Handle registers the handler for the given pattern
// in the DefaultServeMux.
// The documentation for ServeMux explains how patterns are matched.
func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }


type ServeMux struct {
    mu    sync.RWMutex //锁,由于请求涉及到并发处理,因此这里需要一个锁机制
    m     map[string]muxEntry  // 路由规则,一个string对应一个mux实体,这里的string就是注册的路由表达式
    hosts bool // whether any patterns contain hostnames

type muxEntry struct {
    explicit bool // 是否精确匹配
    h        Handler // 这个路由表达式对应哪个handler
    pattern  string //匹配字符串

// NewServeMux allocates and returns a new ServeMux.
func NewServeMux() *ServeMux { return new(ServeMux) }

// DefaultServeMux is the default ServeMux used by Serve.
var DefaultServeMux = &defaultServeMux

var defaultServeMux ServeMux

// Handle registers the handler for the given pattern.
// If a handler already exists for pattern, Handle panics.
func (mux *ServeMux) Handle(pattern string, handler Handler)

// HandleFunc registers the handler function for the given pattern.
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request))

// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request)

上面的代码块中,我列了ServeMux结构的定义以及它的几个重要的方法(有的方法的实现内容后面讲到时再贴)。至此,我们可以看到调用关系了:http.HandleFunc-->func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request))-->func (mux *ServeMux) Handle(pattern string, handler Handler)。也就是说最终调用的是ServeMuxHandle方法。有时我们也用http.Handle注册请求处理函数,其内部也调用的是func (mux *ServeMux) Handle(pattern string, handler Handler)

这里还有个小细节需要注意:在ServeMuxHandle方法的第二个参数是Handler类型,它是个接口。而func (mux *ServeMux) HandleFunc(handler func(ResponseWriter, *Request))方法的第二个参数是func(ResponseWriter, *Request)类型的,对于我们上面的例子就是HelloServer函数,但是这个函数并没有实现Handler接口中定义的ServeHTTP(ResponseWriter, *Request)方法,所以它是不能直接传给Handle方法的的。我们可以看到func (mux *ServeMux) HandleFunc(handler func(ResponseWriter, *Request))函数体是这样的:

func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
    mux.Handle(pattern, HandlerFunc(handler))


type HandlerFunc func(ResponseWriter, *Request)

// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
    f(w, r)

而且HandlerFunc类型还实现了ServeHTTP方法,也就是说它实现了Handler接口。又因为我们的处理函数的签名与它的一致,所以可以强转。所以说HandlerFunc其实就是一个适配器,它使得的我们可以将普通的函数可以作为HTTP的处理函数,只要这个函数的签名是func(ResponseWriter, *Request)这样子的。这也就是为什么我们注册的HTTP请求处理函数的签名都必须写成这个样子。不得不说,这也是Go中一个非常巧妙的用法。


// Handle registers the handler for the given pattern.
// If a handler already exists for pattern, Handle panics.
func (mux *ServeMux) Handle(pattern string, handler Handler) {
    defer mux.mu.Unlock()

    if pattern == "" {
        panic("http: invalid pattern " + pattern)
    if handler == nil {
        panic("http: nil handler")
    if mux.m[pattern].explicit {
        panic("http: multiple registrations for " + pattern)

    if mux.m == nil {
        mux.m = make(map[string]muxEntry)
    mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}

    if pattern[0] != '/' {
        mux.hosts = true

    // Helpful behavior:
    // If pattern is /tree/, insert an implicit permanent redirect for /tree.
    // It can be overridden by an explicit registration.
    n := len(pattern)
    if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
        // If pattern contains a host name, strip it and use remaining
        // path for redirect.
        path := pattern
        if pattern[0] != '/' {
            // In pattern, at least the last character is a '/', so
            // strings.Index can't be -1.
            path = pattern[strings.Index(pattern, "/"):]
        url := &url.URL{Path: path}
        mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern}



// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
    if r.RequestURI == "*" {
        if r.ProtoAtLeast(1, 1) {
            w.Header().Set("Connection", "close")
    h, _ := mux.Handler(r)
    h.ServeHTTP(w, r)


// Handler returns the handler to use for the given request,
// consulting r.Method, r.Host, and r.URL.Path. It always returns
// a non-nil handler. If the path is not in its canonical form, the
// handler will be an internally-generated handler that redirects
// to the canonical path.
// Handler also returns the registered pattern that matches the
// request or, in the case of internally-generated redirects,
// the pattern that will match after following the redirect.
// If there is no registered handler that applies to the request,
// Handler returns a ``page not found'' handler and an empty pattern.
func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
    if r.Method != "CONNECT" {
        if p := cleanPath(r.URL.Path); p != r.URL.Path {
            _, pattern = mux.handler(r.Host, p)
            url := *r.URL
            url.Path = p
            return RedirectHandler(url.String(), StatusMovedPermanently), pattern

    return mux.handler(r.Host, r.URL.Path)

// handler is the main implementation of Handler.
// The path is known to be in canonical form, except for CONNECT methods.
func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
    defer mux.mu.RUnlock()

    // Host-specific pattern takes precedence over generic ones
    if mux.hosts {
        h, pattern = mux.match(host + path)
    if h == nil {
        h, pattern = mux.match(path)
    if h == nil {
        h, pattern = NotFoundHandler(), ""

可以看到,函数的核心功能就是根据请求的url去之前注册时构造的map里面查找对应的请求处理函数,并返回这个而处理函数。得到这个处理函数后,就接着上面的执行h.ServeHTTP(w, r)。我们注册时将我们自定义的请求处理函数强制转换为了HandlerFunc类型,所以从map里面取出来的还是这个类型,所以这里调用的就是这个类型的ServeHTTP方法:

// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
    f(w, r)



  • 首先调用http.HandleFunc,然后内部按顺序做了以下事情:

    1. 调用了DefaultServeMuxHandleFunc方法

    2. 调用了DefaultServeMuxHandle方法

    3. DefaultServeMuxmap[string]muxEntry中增加对应的handler和路由规则

  • 其次调用http.ListenAndServe(":8080", nil),依次做了以下事情

    1. 实例化Server

    2. 调用ServerListenAndServe方法

    3. 调用net.Listen("tcp", addr)监听端口

    4. 启动一个for循环,在循环体中Accept请求

    5. 对每个请求实例化一个Conn,并且开启一个goroutine为这个请求进行服务c.serve(ctx)

    6. 读取每个请求的内容w, err := c.readRequest()

    7. 判断handler是否为空,如果没有设置handler(这个例子就没有设置handler),handler就设置为DefaultServeMux

    8. 调用handlerServeHTTP

    9. 在这个例子中,下面就进入到DefaultServeMux.ServeHTTP

    10. 根据request选择handler,并且进入到这个handler的ServeHTTP

    11. 选择handler:

        - 判断是否有路由能满足这个request(循环遍历`ServerMux`的`muxEntry`)
        - 如果有路由满足,调用这个路由`handler`的`ServeHTTP`
        - 如果没有路由满足,调用`NotFoundHandler`的`ServeHTTP`


从上面的分析可以看到,之所以我们能够用Go非常容易的写一个简单的Web Server程序是因为Go不光提供了机制和接口,还为我们实现了一个版本。比如Go实现了一个ServeMux,并内置了一个全局变量DefaultServeMux,还实现了一系列诸如对于HandleFunc之类的函数和方法,使得我们可以非常容易的去注册请求处理函数,去分发请求。


package main

import (

type MyMux struct{}

func (m *MyMux) ServeHTTP(w http.ResponseWriter, r *http.Request) {
    if r.URL.Path == "/" {
        HelloServer(w, r)

    http.NotFound(w, r)

func main() {
    mux := &MyMux{}

    log.Fatal(http.ListenAndServe(":8080", mux))

func HelloServer(w http.ResponseWriter, req *http.Request) {
    io.WriteString(w, "hello world!\n")



s := &http.Server{
    Addr:           ":8080",
    Handler:        myHandler,
    ReadTimeout:    10 * time.Second,
    WriteTimeout:   10 * time.Second,
    MaxHeaderBytes: 1 << 20,



  1. 时间轨迹

    时间久了再回头来看自己写的,的确是有点乱啊 icon_redface.gif

    时间轨迹 博主 回复


选择表情 captcha